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Abstract— Ensuring safe and generalizable control remains
a fundamental challenge in robotics, particularly when deploy-
ing imitation learning in dynamic environments. Traditional
behavior cloning (BC) struggles to generalize beyond its train-
ing distribution, as it lacks an understanding of the safety-
critical reasoning behind expert demonstrations. To address
this limitation, we propose GenOSIL, a novel imitation learning
framework that explicitly incorporates environment parameters
into policy learning via a structured latent representation.
Unlike conventional methods that treat the environment as a
black box, GenOSIL employs a variational autoencoder (VAE)
to encode measurable safety parameters—such as obstacle
position, velocity, and geometry—into a latent space that
captures intrinsic correlations between expert behavior and
environmental constraints. This enables the policy to infer
the rationale behind expert trajectories rather than merely
replicating them. We validate our approach on two robotic
platforms—an autonomous ground vehicle and a Franka Emika
Panda manipulator—demonstrating superior safety and goal-
reaching performance compared to baseline methods. The
simulation and hardware videos can be viewed on the project
webpage1.

I. INTRODUCTION

As autonomous robots become increasingly integrated into
real-world applications, ensuring safe and high-performance
control remains a fundamental challenge. Imitation learning
(IL) has emerged as a promising approach for training control
policies by leveraging expert demonstrations, particularly in
scenarios where system dynamics are partially known or
difficult to model. However, traditional IL methods, such as
behavioral cloning (BC), often struggle to generalize beyond
the training distribution, leading to performance degradation
in deployment, especially in safety-critical scenarios. This
challenge is further exacerbated in environments where the
robot has only partial observability of its surroundings.

In many practical applications, key safety-related cues
(e.g., obstacle position, velocity, and geometry) are directly
measurable through onboard sensors. Likewise, task specifi-
cations, including goal positions, are often available and may
vary across deployments. Despite the availability of these
structured environmental cues, conventional IL approaches
typically treat the environment as a black box or rely on un-
supervised inference of hidden confounders, which can result
in suboptimal decision-making and compromised safety.

To address safety constraints in robotic systems, various
optimal control strategies have been explored, including
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Fig. 1: Behavior Cloning (BC) struggles to generalize
beyond seen scenarios, often colliding with the dynamic
obstacle, while GenOSIL learns the underlying objective
of avoiding the moving obstacle and successfully navigates
dynamic environments

Constrained Model Predictive Control (MPC) [1], Hamilton-
Jacobi (HJ) reachability-based methods [2], [3], and Control
Barrier Functions (CBFs) [4], [5]. While these approaches
provide formal safety guarantees, they inherently depend on
explicit models of the system and environment dynamics,
which are often difficult to obtain in real-world settings.
Additionally, these techniques have been integrated with
IL to enhance constraint satisfaction in robotic systems.
For instance, HJ reachability-based imitation learning [6]
explicitly enforces control constraints by computing forward
or backward reachable sets to ensure safety. However, such
methods are computationally expensive and do not scale
well to high-dimensional robotic systems due to the curse
of dimensionality. Similarly, CBF-based imitation learning
[7] lacks inherent control bounds, often assuming unlimited
control authority, which is impractical in real-world applica-
tions.

Constrained reinforcement learning (CRL) [8], [9] opti-
mizes policies while enforcing safety constraints, ensuring
reliable control in real-world robotic systems. Unlike stan-
dard RL, it integrates constraint handling through techniques
like Lagrangian relaxation or safety filters to prevent un-
safe actions. While effective, these methods often require
extensive environment interactions and struggle to generalize
across varying safety conditions, limiting their practicality in
dynamic, real-world scenarios. Goal-Conditioned Imitation
Learning (GCIL) [10], [11] extends traditional imitation
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learning by conditioning policies on goal states, allowing
a single policy to achieve multiple objectives. While this
improves task adaptability, conventional GCIL methods pri-
marily focus on goal-reaching rather than safety, leading to
potential failures in environments with dynamic obstacles
or varying safety constraints. These challenges highlight the
need for imitation learning frameworks that generalize across
diverse environments and safety constraints without requiring
explicit system models or computationally expensive reach-
ability analysis.

To address this, we propose GenOSIL, a novel framework
that directly incorporates known, measurable safety and task-
specific parameters into the policy network. Specifically,
GenOSIL, builds upon GCIL by integrating safety-critical
environmental factors into a structured latent representation,
enabling both task adaptability and safety awareness within
a unified framework. To summarize, the key contribution of
our paper is as follows:

• Model-Free Safety Adaptation: Unlike CBFs and HJ
reachability approaches, GenOSIL does not require an
explicit system or environment model, making it more
applicable to real-world settings where such models are
unavailable or inaccurate.

• Improved Generalization: By explicitly conditioning
the policy on safety parameters and task constraints,
GenOSIL generalizes across different environments
(i.e., obstacle dynamics), goal locations, and obstacle
spawn positions without requiring extensive domain
randomization.

• Scalability to Higher Dimensions: Unlike reachability-
based methods, which suffer from exponential com-
plexity in high-dimensional spaces, GenOSIL scales
efficiently by leveraging a learned latent representation
of safety and task constraints.

• Comprehensive Evaluation: We validate GenOSIL
through extensive experiments in simulated robotic
environments and hardware implementations. Com-
parative analyses against baselines demonstrate that
GenOSIL achieves superior task performance, enhances
safety, and generalizes effectively across varying envi-
ronmental and task conditions.

Organization: The remainder of this paper is organized as
follows: Section II briefs on Safe RL, imitation learning, safe
control, and latent variable models. Section III details our
proposed GenOSIL framework, including network architec-
tures, loss functions, and training procedures. Experimental
results are presented in Section IV. Finally, Section V
concludes the paper.

II. PRELIMINARIES

A. Imitation Learning

Imitation learning (IL) is a framework for training policies
that map observations to actions using expert demonstrations,
in cases where dynamics of the system is unknown or very
complex. Various IL approaches exist, including behavioral
cloning (BC) [12], which applies supervised learning to

replicate expert behavior, DAgger [13], which incrementally
expands the training dataset with new expert-labeled state-
action pairs, and inverse reinforcement learning (IRL) [14],
which derives a cost function that aligns with expert demon-
strations by minimizing the inferred cost. While our method
is introduced in the context of behavioral cloning, it is not
limited to this setting. The theoretical foundations developed
in this work apply broadly, ensuring safety guarantees for
methods like DAgger and IRL, as they rely on properties of
the learned controller rather than the specific IL technique
used.

B. Goal-Conditioned Imitation Learning (GCIL)

It is a subdomain of Imitation Learning, where each
demonstration is augmented with one or more goal-states
that are indicative of the task that the demonstration was pro-
vided for. The goal-state contains information that a learning
method can leverage to disambiguate demonstrations. Conse-
quently, a goal-conditioned policy, i.e., a policy that includes
the goal-state in its condition set, can use a given goal-state
to adapt its behavior accordingly. Similarly, goal-states have
also extended the domain of reinforcement learning through
Goal Conditioned Reinforcement Learning (GCRL), where
the agent is not provided expert demonstrations but reward
signals instead. Typically these reward signals are difficult
to define, especially for complex tasks and environments,
providing demonstrations is often a more natural option in
such situations. Additionally, the policy rollouts required by
GCRL are often expensive in real-world settings. Recent
work investigated Goal Conditioned Offline Reinforcement
Learning, which does not require these expensive rollouts
during training.

C. Variational AutoEncoder (VAE)

Variational AutoEncoders (VAEs) [15] are generative
models that learn a probabilistic latent space representation
of data. A VAE consists of two neural networks:

• Encoder qϕ(z|x): Maps input data x to a latent variable
z by approximating the true posterior distribution.

• Decoder pθ(x|z): Reconstructs x from z, ensuring
meaningful latent representations.

The objective function of a VAE is the Evidence Lower
Bound (ELBO):

L(x) = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)), (1)

where the first term maximizes the likelihood of reconstruc-
tions, and the second term regularizes the latent space by
minimizing the Kullback-Leibler (KL) divergence between
the approximate posterior and a prior distribution p(z).

VAEs have been widely adopted for learning structured
representations, denoising, and improving generalization in
downstream tasks, making them a valuable tool for enhanc-
ing imitation learning in RL [16].

Another crucial aspect of training VAE based encoders is
the Reconstruction Loss, which ensures how well a possible
decoder can recreate the original input from the latent
representation. This loss term forces the encoder network to



capture the salient and most informative details of the input
data for downstream tasks.

III. METHODOLOGY

In this section, we present GenOSIL, a framework that
learns a latent safety embedding to enable robust and gener-
alised safe imitation learning. The method first encodes raw
safety parameters (e.g., obstacle position, obstacle velocity,
and obstacle radius) into a structured latent variable, and then
conditions an imitation policy on both the current state and
this latent representation.

A. Problem Formulation

Consider a robotic system with state space S, action
space A, and a set of safety parameters C. The safety
parameters c ∈ C represent critical environmental features
such as obstacle positions, velocities, and geometries. The
goal is to learn a policy π : S × C → A that maps states
and safety parameters to actions while maintaining safety
constraints and accomplishing the desired task. Traditional
imitation learning approaches directly map states to actions
without explicitly considering safety parameters, leading to
poor generalization in safety-critical scenarios. Our approach
addresses this limitation by learning a structured latent repre-
sentation of safety parameters that captures their relationship
with expert actions.

B. Latent Safety Embedding

Let c ∈ Rdc denote the raw safety parameters. We employ
an encoder network E(·) to embed c into a latent variable
z ∈ Rdz . In our VAE-style encoder, we model z using the
reparameterization trick:

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I), (2)

where µ = fµ(c) and σ = exp (0.5 flog var(c)) are the
outputs of the encoder network, and ⊙ denotes element-wise
multiplication.

We model the latent space using a variational approach to
encourage smoothness and interpolation capabilities in the
learned representation. This enables the policy to generalize
to new safety parameter configurations not seen during
training.The encoder architecture consists of fully connected
layers with ReLU activations, culminating in parallel output
layers for µ and log var.

C. Imitation Policy

The imitation policy π(s, z) maps the current state s ∈ Rds

and the latent safety variable z to an action a ∈ Rda :

a = π(s, z). (3)

Unlike traditional behavior cloning approaches that directly
map states to actions, our policy leverages the structured
latent representation of safety parameters. This design al-
lows the policy to understand the underlying safety-critical
reasoning behind expert demonstrations rather than simply
mimicking their actions. The policy network architecture
consists of fully connected layers with ReLU activations. The

state vector s and latent vector z are concatenated and passed
through these layers to produce the action output. This archi-
tecture enables the policy to adaptively respond to different
safety scenarios while maintaining task performance.

D. Loss Functions

For the training objective of the policy framework, we use
a loss function which is composed of these three components
as follows:

1) Imitation Loss: This loss minimizes the mean squared
error (MSE) between the predicted action a and the
expert action a∗:

Limitation =
1

N

N∑
i=1

∥π(si, zi)− a∗i ∥2. (4)

2) KL-Divergence Loss: This term regularizes the latent
space by aligning the encoder’s output distribution
q(z|c) with a standard normal prior p(z) ∼ N (0, I):

LKL = − 1

2N

N∑
i=1

dz∑
j=1

(
1 + log

(
σ2
ij

)
− µ2

ij − σ2
ij

)
.

(5)

3) Reconstruction Loss: To ensure that the latent repre-
sentation z retains the critical information contained in
the raw safety parameters c, we introduce a decoder
network D(·) that reconstructs c from z, yielding ĉ =
D(z). The reconstruction loss is then defined as the
mean squared error (MSE) between the original safety
parameters and their reconstruction:

LReconstruction =
1

N

N∑
i=1

∥ci − ĉi∥2. (6)

This loss term forces the encoder to produce a latent
embedding that not only supports robust imitation via
the policy network but also accurately captures the
underlying safety characteristics, thereby promoting an
informative and consistent latent space.

The total loss function is given by:

L = Limitation + β LKL + γ LReconstruction, (7)

where β & γ are hyperparameters that balance the imitation
loss, KL divergence regularization and reconstruction loss.
To stabilize training, we implement an adaptive annealing
schedule for these hyperparameters, starting with small val-
ues and gradually increasing them throughout training.

E. Training Algorithm

Algorithm 1 summarizes the training procedure for
GenOSIL. The algorithm integrates the encoder-decoder ar-
chitecture with the policy network in an end-to-end training
framework. The hence trained policy can then be used to
sample the actions for incoming states and safety parameters
from the franka manipulator.
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Fig. 2: GenOSIL Architecture: (Left) During training, expert demonstration trajectories—augmented with obstacle
parameters, and goal coordinates—are used to learn the Variational Encoder to produce a latent representation (z), which is
combined with agent’s state to drive training of the Policy Network. (Right) At inference, trained architecture deploys the
Policy Network on a real agent, generating actions for safe navigation in dynamic environments.

Algorithm 1 Training Procedure for GenOSIL

1: Input: Expert dataset D = {(si, ci, a∗i )}Ni=1, learning
rate η, KL weight β, reconstruction weight γ, annealing
duration Tanneal.

2: Initialize parameters for encoder E(·), decoder D(·), and
policy π(·, ·).

3: for each epoch do
4: for each mini-batch {(s, c, a∗)} in D do
5: Forward Pass:
6: Compute latent representation: z, µ, log var ←

E(c).
7: Predict action: a← π(s, z).
8: Reconstruct safety parameters: ĉ← D(z).
9: Loss Computation:

10: Imitation loss: Limitation ← ∥a− a∗∥2.
11: KL loss: LKL ← − 1

2

∑
(1 + log var − µ2 −

exp(log var)).
12: Reconstruction loss: LReconstruction ← ∥c− ĉ∥2.
13: Compute current annealing factors: βt = βmax ·

min(1, t
Tanneal

), γt = γmax ·min(1, t
Tanneal

)
14: Total loss: L ← Limitation + βt LKL +

γt LReconstruction.
15: Backward Pass: Backpropagate L and update

parameters using gradient descent with learning rate η.
16: end for
17: end for
18: Output: Trained model parameters.

IV. EXPERIMENTS

We assess the effectiveness of our proposed method,
GenOSIL, by benchmarking it against baseline approaches
on two simulated tasks –Autonomous Navigation of a
Ground Vehicle, and Reach Safe Franka Emika Panda manip-
ulator, as well as its hardware demonstration. Our evaluation
focuses on generalization ability, safety performance, and
robustness across varies environmental conditions. All ex-

periments are conducted using an AMD Ryzen Threadripper
PRO 7975WX (32-core CPU), 32 GB RAM, and an NVIDIA
RTX 6000 Ada Generation GPU. Later we also use a Franka
Emika Panda for demonstration of hardware implementation
of our approach.

A. Baselines and Evaluation Metrics

To evaluate GenOSIL, we compare it against two base-
lines: Goal-Conditioned Behavior Cloning (GC-BC) [10],
which learns policies through behavior cloning under ran-
domized safety conditions without explicitly conditioning on
safety parameters, relying on domain randomization for gen-
eralization; and Constrained Proximal Policy Optimization
(C-PPO) [17], which extends PPO by incorporating safety
constraints using Lagrange multipliers to penalize constraint
violations during training. GC-BC tests whether exposure
to diverse conditions alone enables generalization, while C-
PPO provides a reinforcement learning-based comparison
that explicitly incorporates constraints. The performance of
our method and its baselines are assessed using the following
two key metrics:

1) Safety Rate: the percentage of test trials in which the
agent doesn’t collide with the obstacle at any timestamp.

2) Reach Rate: the percentage of complete trials where
the learned policy successfully reaches the goal. Note
that a successfully reached episode is one during which
the agent doesn’t collide into the obstacle at any point
in time during the entire episode. Only such successful
reaches are used in calculating the Reach Rate.

B. Autonomous Navigation of a Ground Vehicle

In this task, an agent must reach a parameterized goal
while navigating an environment containing a dynamic ob-
stacle. The agent’s state is represented as s = (x, y, θ),
where (x, y) denotes position and θ is orientation. The
action space consists of linear and angular velocities, a =
(v, ω). The environment features a moving circular obstacle
whose position is sampled to ensure a safe margin between
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Fig. 4: Autonomous navigation of ground vehicle towards
the goal while safely dodging the moving obstacle

the agent’s initial state and goal. The obstacle’s radius is
drawn from a predefined range to introduce variability, and
its velocity is dynamically assigned to create unpredictable
motion. This setup requires the agent to continuously adapt
its trajectory in real time.

Expert Data Generation: Expert demonstrations are gen-
erated using a collision cone-based control barrier function
(CBF) [18]. The dataset, which includes 10k expert demon-
strations, is constructed by randomly sampling initial robot
states (s), obstacle parameters (O—position, velocity, and
radius), and goal position (G).

Evaluation and Comparative Analysis: We evaluate
performance across 1000 sampled test scenarios, ensuring
that the expert demonstrations satisfy safety and reach condi-
tions. Figure 3 summarizes the results. GenOSIL outperforms
both C-PPO and GC-BC on both the evaluation metrics. It
achieves the highest Safety Rate while maintaining a supe-

rior Reach Rate. Although C-PPO effectively enforces safety
constraints, it struggles with goal-reaching performance, and
GC-BC achieves higher reach rates but suffers from frequent
collisions. These results underscore GenOSIL’s ability to
balance safety and task performance.

C. Franka Manipulator Task

In this task, a Franka Panda manipulator must reach a pa-
rameterized goal while avoiding obstacles in its workspace.
For this experiment, we have used safe-panda-gym simula-
tion environment [19], [20]. The state representation of the
manipulator consists of its Cartesian position, s = (x, y, z).
The action space comprises end-effector displacement, a =
(dx, dy, dz), applied through Position Control. The environ-
ment includes static and dynamic obstacles, where obstacle
positions, sizes, and velocities are sampled to introduce
variability. This setup forces the manipulator to dynamically
adjust its trajectory while respecting safety constraints.

Expert Data Generation: Expert demonstrations are col-
lected using the same collision cone-based CBF approach,
with datasets generated from randomized initial manipula-
tor states(s), (O—position, velocity, and radius), and goal
position (G). This ensures collision-free trajectories for safe
reaching.

Evaluation and Comparative Analysis: We evaluate the
performance across 1000 sampled test scenarios, ensuring ex-
pert demonstrations adhere to safety and reachability condi-
tions. Figure 3 summarizes the results. GenOSIL outperforms
both GC-BC and C-PPO in terms of safety and reach rates.
While C-PPO achieves commendable safety performance,
its goal-reaching capability is compromised, and GC-BC
achieves a higher reach rate but at the cost of safety.
GenOSIL demonstrates an effective balance between task
completion and collision avoidance, validating its application
to dynamic robotic manipulation.



Fig. 5: The figure illustrates the Franka Panda manipulator advancing toward its designated target while executing collision
avoidance maneuvers in the presence of a dynamic obstacle. The green region denotes the goal area, and the red circle
identifies the moving obstacle, with its direction indicated by the arrow.

Hardware Results: We further validate GenOSIL on a
physical Franka Emika Panda manipulator. In this setup,
virtual obstacles are employed, and environmental param-
eters (obstacle properties and goal locations) are provided in
real time to the policy. Figure 5 presents key frames from
the hardware demonstration, confirming successful goal-
reaching with effective obstacle avoidance.

V. CONCLUSION

We presented GenOSIL, a framework for safe and gener-
alizable imitation learning that addresses fundamental limi-
tations in behavior cloning by incorporating environmental
safety parameters into policy learning. Experiments on nav-
igation and manipulation tasks demonstrate that GenOSIL
outperforms baseline methods in both safety and goal-
reaching performance while eliminating the need for explicit
system models. Our approach enables effective general-
ization across varying environmental conditions, making it
promising for real-world robotic applications where both
performance and safety are critical. Future work will focus
on integrating actuation constraints into the framework to
further enhance its generalizability and robustness in real-
world scenarios.
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